

All fields and uploads are required unless otherwise noted.

THRESHOLD ATTEMPTED

Points Attempted: 0

ALL OPTIONS

TARGET FINDER

The following fields are required, but the values have no bearing on EA Prerequisite 2 compliance. Use the Target Energy Performance Results calculator on the <u>ENERGY STAR website</u> to generate the values. If using prescriptive compliance paths (Options 2 or 3), leave the Design energy consumption and cost values blank in the Target Finder website, and set the Design values equal to the Target values in this form.

The building is not able to get a Target Finder score because the tool does not support the primary building type of the project building.(Optional)

PREREQUISITE COMPLIANCE

Total gross square footage:		374,182 sf
Principal project building activity:	Core Learning Space: College/University	

Select a compliance path:

• **Option 1. Whole Building Energy Simulation.** The project team will document improvement in the proposed building performance rating as compared to the baseline building performance rating per ASHRAE/IESNA Standard 90.1-2007 or California Title 24-2005 Part 6.

- Option 2. Prescriptive Compliance Path: ASHRAE Advanced Energy Design Guide. The project team will document compliance with the ASHRAE Advanced Energy Design Guide.
- Option 3. Prescriptive Compliance Path: Advanced Buildings Core Performance Guide. The project team will document compliance with the Advanced Buildings[™] Core Performance[™] Guide.

OPTION 1. WHOLE BUILDING ENERGY SIMULATION

Complete the following sections:

- Section 1.1A General Information
- Section 1.1B Mandatory Requirements
- Section 1.2 Space Summary
- Section 1.3 Advisory Messages
- Section 1.4 Comparison of Proposed Design Versus Baseline Design Energy Model Inputs
- Section 1.5 Energy Type Summary
- Section 1.6 On-Site Renewable Energy (if applicable)
- Section 1.7 Exceptional Calculation Measure Summary (if applicable)
- Section 1.8 Performance Rating Method Compliance Report
- Section 1.9A Total Building Performance Summary

Section 1.9B - Reports & Metrics

SECTION 1.1A - GENERAL INFORMATION

- Compliant energy simulation software: The energy simulation software used for this project has all capabilities described in EITHER section "G2 Simulation General Requirements" in Appendix G of ASHRAE 90.1-2007 OR the analogous section of the alternative qualifying energy code used.
- Compliant energy modeling methodology: Energy simulation runs for both the baseline and proposed building use the assumptions and modeling methodology described in EITHER ASHRAE 90.1-2007 Appendix G OR the analogous section of the alternative qualifying energy code used.

Simulation program:

Principal heating source:

Energy code used:

List the ASHRAE addenda used in the modeling assumptions, if any.

Save Form

eQuest Fossil Fuel ASHRAE 90.1-2007

Zip/Postal Code:	10011
Weather file: TMY3\NY_New_York_Central_Prk_O.bin	
Climate zone:	4A
List the climatic data from ASHRAE Standard 90.1-2007 Table D-1. Specify if referenced for HDD & CDD data.	another source is
Heating Degree Days:	4,805
Cooling Degree Days:	3,634
HDD and CDD data source, if other than ASHRAE: (Optional)	
New construction gross square footage:	374,182
Existing, renovated gross square footage:	0
Existing, unrenovated gross square footage:	0
Total gross square footage:	374,182
New construction percent:	100 9
Existing renovation	0 9
Existing unrenovated	0 9
Gross square footage used in the energy model, if different than gross square footage above: (Optional)	369,211

SECTION 1.1B - MANDATORY REQUIREMENTS

For all elements included in the architect's scope of work for the project building, the project building design complies with all ASHRAE Standard 90.1-2007 mandatory provisions (Sections 5.4, 6.4, 7.4, 8.4, 9.4 and 10.4), and the information provided regarding the Proposed Case energy model in Section 1.4 is consistent with the Building Design.

Signatory: Mauricio Ulloa; Architect; January 25, 2012

For all elements included in the mechanical engineer's scope of work for the project building, the project building design complies with all ASHRAE Standard 90.1-2007 mandatory provisions (Sections 5.4, 6.4, 7.4, 8.4, 9.4 and 10.4), and the information provided regarding the Proposed Case energy model in Section 1.4 is consistent with the Building Design.

Signatory: David Leo; MEP Engineer; January 18, 2012

For all elements included in the electrical engineer's scope of work for the project building, the project building design complies with all ASHRAE Standard 90.1-2007 mandatory provisions (Sections 5.4, 6.4, 7.4, 8.4, 9.4 and 10.4), and the information provided regarding the Proposed Case energy model in Section 1.4 is consistent with the Building Design.

Signatory: David Leo; MEP Engineer; January 18, 2012

Upload the following Interactive Compliance Forms: (Optional)

Upload EAp2-2. Building Envelope Compliance Documentation

Upload EAp2-3. HVAC Compliance Documentation

- Upload EAp2-4. Lighting Compliance Documentation
- Upload EAp2-5. Service Water Heating Compliance Documentation

SECTION 1.2 - SPACE SUMMARY

Table EAp2-1. Space Usage Type

Space Name / Description	Space Usage Type	Space Size	Regularly Occupied GSF	Unconditioned GSF	Typical Hours in Operation (per week)
Auditorium	Audience/Seating Area: F	7,512	7,512	0	45
Classroom	Classroom/Lecture/Trainin	66,778	66,778	0	60
Corridor	Corridor/Transition	38,850	0	0	0
Dining	Dining Area	9,906	9,906	0	40
Dormitory	Dormitory - Living Quarter	103,851	103,851	0	168
Fitness	Exercise Area	1,375	1,375	0	50
Kitchen	Food Preparation	1,882	1,882	0	40

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance REQUIRED SIGNATORY Initial here: MU ARCHITECT

REQUIRED SIGNATORY										
Initial here:	dl									
MECHANICAL	ENGINEER									

 REQUIRED SIGNATORY

 Initial here:
 dl

 ELECTRICAL ENGINEER

Page 5 of 13

Space Name / Description	Space Usage Type	Space Size	Regularly Occupied GSF	Unconditioned GSF	Typical Hours in Operation (per week)
Laundry	Laundry-Washing	855	855	0	40
Lecture Hall	Classroom/Lecture/Trainin	6,668	6,668	0	60
Library - Reading	Reading Area	4,714	4,714	0	40
Library - Stacks	Stacks	1,458	1,458	0	0
Lobby	Lobby	5,356	5,356	0	60
Lounge	Lounge/Recreation	2,887	2,887	0	60
Meeting	Conference/Meeting/Mult	2,001	2,001	0	40
Electrical/Mechanical	Electrical/Mechanical	33,823	0	7,670	0
Office	Office	10,430	10,430	0	40
Restroom	Restrooms	10,700	0	0	0
Retail	Retail	9,029	9,029	0	80
Shafts	Shafts	22,866	0	22,866	0
Stair	Stairs-Active	20,235	0	20,235	0
Storage	Active Storage	8,035	0	8,035	0
	Total	369,211	234,702	58,806	
	Percentage of total (%)		63.57	15.93	

Add Row

Delete Row

SECTION 1.3 - ADVISORY MESSAGES

Complete Table EAp2-2 based on information from the energy simulation output files.

Table EAp2-2. Advisory Messages

	Baseline Design (0° Rotation)	Proposed Design
Number of hours heating loads not met ¹	253	231
Number of hours cooling loads not met ¹	0	49
Total	253	280
Difference ² (Proposed design minus baseline design)		27
Number of warning messages	13	15
Number of error messages	0	0
Number of defaults overridden	0	0

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance Page 6 of 13

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance

Delete Row

SECTION 1.5 - ENERGY TYPE SUMMARY

List the energy types used by the project (i.e. electricity, natural gas, purchased chilled water or steam, etc.) for the Baseline and Proposed designs.

If revising the values in Table EAp2-3, reselect energy type in all affected rows in Table EAp2-4 and Table EAp2-5 to ensure that the revised values from Table EAp2-3 are propogated and that Table EAp2-4 and Table EAp2-5 calculations are refreshed.

Table EAp2-3. Energy Type Summary

Energy Type	Utility Company Name	Utility Rate and Description of rate structure ¹	Baseline Virtual Rate ² (\$ per unit energy)	Proposed Virtual Rate ² (\$ per unit energy)	Units of Energy	Units of Demand
Electricity	ConEdison	General Large Comme	0.1967	0.2421	kWh	kW
Natural Gas	ConEdison	From NYS Public Servic	1.2851	1.2699	therms	kBtuh
			0	0		

¹Describe the rate structure and list the local utility rate/s for the energy type. Per ASHRAE 90.1-2007 G2.4, project teams are allowed to use the state average energy prices published by DOE's EIA for commercial building customers, readily available on EIA's website (www.eia.doe.gov). If project uses backup energy for on-site renewable energy, please specify the rate of backup source energy.

²List the virtual energy rate from the baseline and proposed design energy model results or from manual calculations. This rate is defined as defined as the total annual charge divided by the metered energy from the plant for each resource. Provide a narrative explaining demand reduction if the Proposed and Baseline rates vary significantly.

Add Row

Unmet load hours compliance Y ¹Baseline design and proposed design unmet load hours each may not exceed 300

²Unmet load hours for the proposed design may not exceed the baseline design by more than 50 hours.

SECTION 1.4 - COMPARISON OF PROPOSED DESIGN VERSUS BASELINE DESIGN ENERGY MODEL INPUTS

Download, complete, and upload "EAp2 Section 1.4 table.xls" (found under "Credit Resources") to document the Baseline and Proposed design energy model inputs for the project.

Documentation should be sufficient to justify the energy and cost savings numbers reported in the Performance Rating Table.

Upload

Upload EAp2-7. Provide the completed EAp2 Section 1.4 Tables available under "Credit Resources."

If the Proposed and Baseline rates vary significantly, describe the building input parameters (e.g. demand reduction measures) leading to the variation in energy rates, and provide detailed information regarding the utility rate structure including all demand and energy charges, and the seasonal and time-of-use structure of the utility tariff. (Required when Proposed & Baseline Rates vary by more than 10%)

The virtual electricity rates above vary by more than 10%. This difference in electricity rate is caused by the cogeneration systems serving the building.

Building with cogeneration -Electricity Consumption: 2,147,461 kWh/yr Electricity Cost: 519,865 \$/yr Virtual Rate: 0.24084 \$/kWh

Building without cogeneration -Electricity Consumption: 4,472,809 kWh/yr Electricity Cost: 879,360 \$/kWh

Upload EAp2-8. Provide any documentation to support the proposed/baseline rate variance narrative. (Optional)

Files: 0

Upload

SECTION 1.6 - PERFORMANCE RATING METHOD COMPLIANCE REPORT

In Table EAp2-4, list each energy end use for the project (including all end uses reflected in the baseline and proposed designs). Then check whether the end-use is a process load, select the energy type, and list the energy consumption and peak demand for each end-use for all four Baseline Design orientations.

Fill out the Proposed Design energy consumption and peak demand for each end use in Table. Performance Rating - Performance Rating Method Compliance.

Table EAp2-4. Baseline Performance - Performance Rating Method Compliance

End	Process	Baseline Design Energy Type	Units of Annual Energy & Peak Demand		Baseline (0°	Baseline (90° rotation)	Baseline (180° rotation)	Baseline (270° rotation)	Baseline Building Results					
Interior Lighting			Energy Use	kWh	971,180	971,180	971,180	971,180	971,180					
		Electricity	Demand	kW	281.74	281.74	281.74	281.74	281.74					
Exterior			Energy Use											
Extend			Demand											
Space			Energy Use	therms	157,820	161,070	159,370	156,160	158,605					
Opace		Natural	Demand	kBtuh	12,000	12,000	12,000	12,000	12,000					
Space Cooling			Energy Use	kWh	1,373,961	1,371,848	1,371,985	1,383,634	1,375,357					
Opace Ocoming		Electricity	Demand	kW	728.09	722.58	723.61	733.23	726.88					
Pumps			Energy Use	kWh	839,117	844,828	843,046	847,205	843,549					
i unpo		Electricity	Demand	kW	126.9	127.75	126.76	127.55	127.24					
Heat Rejection	•							Energy Use	kWh	35,094	35,115	35,183	35,371	35,190.75
		Electricity	Demand	kW	80	80.57	80.49	80.79	80.46					
Fans-Interior			Energy Use	kWh	1,336,590	1,332,314	1,340,411	1,338,326	1,336,910					
Fans-Intenor		Electricity	Demand	kW	207.09	201.15	203.17	206.55	204.49					

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance Page 8 of 13

Fans - Parking	×		Energy Use						
Garage			Demand				-		
Service Water			Energy Use	therms	55,910	55,910	55,910	55,910	55,910
Heating		Natural Gas	Demand	kBtuh	1,600	1,600	1,600	1,600	1,600
Receptacle	$\mathbf{\times}$		Energy Use	kWh	815,139	815,139	815,139	815,139	815,139
Equipment		Electricity	Demand	kW	187.46	187.46	187.46	187.46	187.46
Interior Lighting -	×		Energy Use						
Process			Demand						
Refrigeration	×		Energy Use						
Equipment			Demand						
Cooking	×		Energy Use						
Cooking			Demand						
Industrial Process	\times		Energy Use						
			Demand						
Elevators and	$\mathbf{\times}$		Energy Use	kWh	159,080	159,080	159,080	159,080	159,080
Escalators		Electricity	Demand	kW	69	69	69	69	69
Space			Energy Use	kWh	0	0	0	0	0
		Electricity	Demand	kW	0	0	0	0	0
Baseline Energy Totals		Total Energy U (mBtu/yr)	se	40241.91	40564.67	40416.91	40143.38	40341.72	
				Annual Process Energy (mBtu/yr)			3324.04		
						inergy Moo	deling Con	npliance ¹	Ν

1. Annual process energy costs must be at least 25% of the total energy costs for the proposed design. This form determines compliance using cost calculations from Section 1.9. Process Energy Costs should be modeled to accurately reflect the proposed building. Process Energy must be the same in the baseline and proposed cases, unless an exceptional calculation is used. Process energy costs must be at least 25% of the total baseline energy costs. Any exceptions must be supported by a narrative and/or other supporting documentation.

Add Row Delete Row

Note: Compliance is determined correctly after Section 1.9A is complete. If the project does not comply, explain any exceptions in the narrative below.

Explain any exceptions, special circumstances or modeling difficulties that occurred relating to the process energy noncompliance.

The proposed building process energy does comply but because there is no separate section to report the electricity generation and gas consumed by the cogeneration system this form is not picking up the correct numbers. An explanation is given below to show that the process energy cost in the proposed building is at least 25%:

Proposed building total annual energy cost (with cogeneration): \$943,077

Proposed building total process energy:

Proposed building virtual energy rate: \$0.242084/kWh

Proposed building total process energy cost: \$235,842

% process energy cost: 25%

Note: Table EAp2-11 reports the energy consumption and cost for both the baseline and proposed building with cogeneration. Table Eap2-5 reports the energy consumption for the proposed building without cogeneration.

Page 9 of 13

Upload

Files: 0

End Use	Process	Baseline Buil	ding Units	Baseline Building Results	Proposed Design Energy Type	Units of Annual Energy & Peak Demand		Proposed Building Results	Percent Savings
Interior		Energy Use	kWh	971180		Energy Use	kWh	827,074	
Lighting		Demand	kW	281.74	Electricity	Demand	kW	267.17	14.84
Exterior		Energy Use				Energy Use		0	
Lighting		Demand				Demand		0	0
Space		Energy Use	therms	158605		Energy Use	therms	80,482	
Heating		Demand	kBtuh	12000	Natural Gas	Demand	kBtuh	6,590	49.26
		Energy Use	kWh	1375357		Energy Use	kWh	915,014	
Space Cooling		Demand	kW	726.88	Electricity	Demand	kW	520.8	33.47
		Energy Use	kWh	843549		Energy Use	kWh	639,635	
Pumps		Demand	kW	127.24	Electricity	Demand	kW	167.16	24.17
		Energy Use	kWh	35190.75		Energy Use	kWh	71,333	
Heat Rejection		Demand	kW	80.46	Electricity	Demand	kW	74.86	-102.7
		Energy Use	kWh	1336910.2		Energy Use	kWh	1,036,644	
Fans-Interior		Demand	kW	204.49	Electricity	Demand	kW	215.12	22.46
	X	Energy Use				Energy Use		0	
Fans - Parking		Demand				Demand		0	0
Garage		Energy Use	therms	55910		Energy Use	therms	4,670	
Service Water		Demand	kBtuh	1600	Natural Gas	Demand	kBtuh	150	91.65
neating	NZ	Energy Use	kWh	815139		Energy Use	kWh	815,139	
Receptacle		Demand	kW	187.46	Electricity	Demand	kW	187.46	0
Equipment	N	Energy Use				Energy Use		0	
Interior Lighting -		Demand				Demand		0	0
Process	N/	Energy Use				Energy Use		0	
Refrigeration		Demand				Demand		0	0
Equipment	Ň	Energy Use				Energy Use		0	
Cooking		Demand				Demand		0	0
1	~~~~	Energy Use				Energy Use		0	
Industrial		Demand				Demand		0	0
FIUCESS	~~~	Energy Use	kWh	159080		Energy Use	kWh	159,080	
Elevators and Escalators		Demand	kW	69	Electricity	Demand	kW	69	0

Table EAp2-5. Performance Rating - Performance Rating Method Compliance

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance Page 10 of 13

Space Heating		Energy Use	kWh	0		Energy Use	kWh	5665	
Space nealing	Demand	kW	0	Electricity	Demand	kW	4.13	0	
Baseline Total Energy Use			40341.72	Proposed Total E	nergy Use	23765.42	MBtu/yr		
Baseline Process Energy		3324.04	Proposed Proces	s Energy	3324.04	MBtu/yr			

Table EAp2-6. Section 1.6 Energy Use Summary & Energy Savings

Energy Type	Units	Baseline Design	Proposed Design
Electricity	kWh	5,536,406	4,469,584
Natural Gas	therms	214,515	85,152
		0	0
Totals	MMBtu	40,341.72	23,765.42

SECTION 1.7 - EXCEPTIONAL CALCULATION MEASURE SUMMARY

Select one of the following

- The energy analysis includes exceptional calculation method(s) (ASHRAE 90.1-2007, G2.5).
- The energy analysis does not include exceptional calculation methods.

SECTION 1.8 - ON-SITE RENEWABLE ENERGY

Select one of the following

- The project uses on-site renewable energy produced on-site.
- The project does not use on-site renewable energy.

SECTION 1.9A - TOTAL BUILDING PERFORMANCE SUMMARY

Table EAp2-10. Energy Use Summary: Total Building Energy Use Performance

Energy Type	Units	Baselin	e Case	Proposed Case			
Section 1.6 Energy Use		Process	Section 1.6 Energy Use	Section 1.6 Energy Use	Section 1.7 Energy Savings	Section 1.8 Ren Energy Savings	Total Energy Use
Electricity	kWh	974,219	5,536,406	4,469,584	0	0	4,469,584
Natural Gas	therms	0	214,515	85,152	0	0	85,152
		0	0	0	0	0	0
Totals	MMBtu	3,324.04	40,341.72	23,765.42	0	0	23,765.42
					Energy	use savings	41.09 %

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance Page 11 of 13

 Table EAp2-11.
 Energy Cost Summary: Total Building Energy Cost Performance (Baseline Case)

Energy Type	Baseline Cost (\$) (0° rotation)	Baseline Cost (\$) (90° rotation)	Baseline Cost (\$) (180° rotation)	Baseline Cost (\$) (270° rotation)	Baseline Building Performance
Electricity	1,087,783	1,087,653	1,088,936	1,091,672	1,089,011
Natural gas	274,664	278,841	276,656	272,531	275,673
Totals	1,362,447	1,366,494	1,365,592	1,364,203	1,364,684

Table EAp2-12. Energy Cost Summary: Total Building Energy Cost Performance (Manual Cost Input)

Energy Type	Units	Baseline Case		Proposed Case			
Section 1.6 Energy Use		Process	Section 1.6 Energy Use	Section 1.6 Energy Use	Section 1.7 Energy Savings	Section 1.8 Ren Energy Savings	Total Energy Cost
Electricity	\$	0	1,089,011	519,116	0	0	519,116
Natural Gas	\$	0	275,673	420,315	0	0	420,315
	\$	0		0	0	0	0
Totals	\$	0	1,364,684	939,431	0	0	939,431
Baseline process energy costs as percent of total energy costs (%)			0	Energy cost savings		31.16 %	
	EA Cre	edit 1 points	documented	10			

Use the Automatic Cost Calculation path if the project uses automatic cost calculation under Section 1.7 or Section 1.8.

Automatic Cost Calculation: The project will generate the energy cost values using the virtual energy rate from Section 1.5: Energy Use Summary.

Section 1.9B - REPORTS AND METRICS

Table EAp2-14. Energy Use Intensity

	Baseline EUI	Proposed EUI						
	Electricity (kWh/sf)							
Interior Lighting	2.595	2.21						

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance

Space Heating	0	0				
Space Cooling	3.676	2.445				
Fans - Interior	3.573	2.77				
Service Water Heating	0	0				
Receptacle Equipment	2.178	2.178				
Miscellaneous	2.774	2.342				
Total	14.796	11.945				
	Natural Gas (kBtu/sf)					
Space Heating	42.387	21.509				
Service Water Heating	14.942	1.248				
Total Energy Use Intensity (kBtu/sf)						
Total	107.813	63.513				

Table EAp2-15. End Use Energy Percentage

	Baseline Case	Proposed Case	End Use Energy Savings (%)
Interior Lighting	8.212	11.872	2.965
Space Heating	3,931.53	3,386.551	4,712.867
Space Cooling	11.634	13.135	9.481
Fans - Interior	11.308	14.881	6.185
Service Water Heating	1,385.918	196.495	3,091.196
Receptacle Equipment	6.893	11.7	0
Miscellaneous	8.779	12.582	3.327

Input & Output Summaries from the Energy Model

Upload the summary report from the simulation program.

- **Upload EAp2-11.** If the project used DOE2, eQuest & Visual DOE, provide the Input summary and the BEPS, BEPU, & ES-D reports.
- Upload EAp2-12. If the project used EnergyPlus, provide the Input summary and the Annual Building Utility Performance Summary (ABUPS), System Summary, and the file that shows the annual energy cost by fuel source.
- **Upload EAp2-13.** If the project team used EnergyPro, provide the Input summary and the Title 24 reports: PERF-1, ECON-1, & UTIL-1.
- Upload EAp2-14. If the project team used HAP, provide the Input summary and the Annual Cost Summary, Unmet Load reports for all plants and systems (Building Zone Temperature Report), and Systems Energy Budget by Energy Source.

LEED 2009 for New Construction and Major Renovations EA Prerequisite 2: Minimum Energy Performance Upload Files: 6

Page 13 of 13

- Upload EAp2-15. If the project team used Trace, provide the Input summary as well as the the Energy Consumption Summary, Energy Cost Budget/PRM Summary report, and Performance Rating Method Details.
- O Upload EAp2-16. For all other modeling software, upload supporting documents of similar scope and detail (input and output summaries.)

ADDITIONAL DETAILS

Special circumstances preclude documentation of prerequisite compliance with the submittal requirements outlined in this form.

SPECIAL CIRCUMSTANCES

Describe the circumstances limiting the project team's ability to provide the submittals required in this form. Be sure to reference what additional documentation has been provided, if any. Non-standard documentation will be considered upon its merits.

The following documents have been modified and/or added to the supporting document comments:	tation in response to the	GBCI design review
 Clarification narrative: 120710 The New School Resubmission Narative.pdf Revised Energy Model Report: 120710 The New School_100 CD_Energy Analysis R Baseline and Proposed BEPS, BEPU, ES-D reports: 120710 The New School BEPS Baseline and Proposed PS-H Reports For DHW Heaters and Co-generation Equipm EAp2 Section 1.4 table revised: EAp2+Section+1.4+tables REV01.xls All original support documentation submitted during the preliminary design review has been support. 	Report_REV03.pdf , BEPU, ES-D REV01.p ent: 120710 The New S peen kept for compariso	df chool PS-H.pdf n purposes.
Upload EAp2-SC. Provide any additional documentation that supports the claim to special circumstances. (Optional)	Upload	Files: 1
The project team is using an alternative compliance approach in lieu of standar	rd submittal paths.	
JMMARY		
Prerequisite 2: Minimum Energy Performance Compliance Documented:	Y	Check Compliand

Note: Click "Check Compliance" to validate that the form meets the requirements. "Check Compliance" must be run after any changes are made to the form to ensure that "Compliance Documented" is accurate. Always press "Check Compliance" before saving the form. Fields are highlighted in red after "Check Compliance" is pressed are incomplete required fields. After entering information in those fields and pressing "Check Compliance" once more, the fields should return to their normal color

Buro Happold

The New School University Center Energy Analysis Study (based on 100% CD submittal)

July 10, 2012 **Revision 3**

Revision	Description	Issued by	Date	Checked
1	Energy Analysis Study	MS	05-16-2011	SB
2	Energy Analysis Study	MS	09-15-2011	SB
3	Energy Analysis Study	KW	07-10-2012	SB

Buro Happold

This report has been prepared for the sole benefit, use and information of DURST and The New School for the purposes set out in the report or instructions commissioning it. The liability of Buro Happold Limited in respect of the information contained in the report will not extend to any third party.

author	M.Sajjal/ K.Wiebe
signature	
date	July 10, 2012
approved	S.Baumgartner
signature	
date	July 10, 2012

Buro Happold

Team

Owner: The New School

Architect: SOM LLP

MEP: Cosentini Associates

Energy/LEED: Buro Happold

	Buro Happold
	Contents
1	Executive Summary
	1.1 Whole Building Energy Analysis
2	Project Brief
3	Introduction
4	Methodology
	4.1 Energy Modelling
5	DTM – Building Energy Conservation Measures
6	DTM - Model Inputs and Assumptions

6	DTM - Model Inputs and Assumptions	13
7	Energy Summary by End use (Proposed design vs. baseline building)	31
8	Conclusion	32

Conclusion ъ

Energy Analysis 8.1

32

1 Executive Summary

1.1 Whole Building Energy Analysis

The New School's University Center has been designed to achieve a LEED Gold rating using the LEED 2009 Tool. To aid in the design process and document the predicted energy savings to satisfy the LEED requirements, Buro Happold built an energy model using eQuest simulation tool to represent the architectural and HVAC systems. According to this whole-building simulation, the facility will perform **31.2% (in energy cost)** better than the ASHRAE/IESNA 90.1-2007 baseline requirements using the Performance Rating Method (Appendix G). It should be noted that this percentage savings is for the entire building annual energy cost by using the likely utility rate in the region. Changes in these rates will affect the percentages of energy cost savings.

To maximize the energy savings over baseline building, a list of energy conservation measures was investigated. This report summarizes the cumulative energy savings from the agreed upon energy conservation measures. The building will comply with all mandatory requirements under 90.1-2007 and comply with the prerequisite of ASHRAE 90.1-2007. The 31.2% estimated energy cost reduction equates to **10 LEED points** under EA Credit 1 (9 for 28%, 10 for 30%, and 11 for 32%)

2 Project Brief

The proposed University Center is located at the corner of 5th Avenue and 14th Street in Manhattan. The project consists of a base of academic, retail and theater space, and a tower on the base of dormitories. Working from the construction document drawings, we calculated a total gross sq footage of 369,210 sq. ft. as follows:

Space Name	Space Size (sf)	Regularly Occupied (sf)	Unconditioned (sf)
Auditorium	7,512	7,512	0
Classroom	66,778	66,778	0
Corridor	38,850	0	0
Dining	9,906	9,906	0
Dormitory	103,851	103,851	0
Fitness	1,375	1,375	0
Kitchen	1,882	1,882	0
Laundry	855	855	0
Lecture Hall	6,668	6,668	0
Library - Reading	4,714	4,714	0
Library - Stacks	1,458	1,458	0
Lobby	5,356	5,356	0
Lounge	2,887	2,887	0
Meeting	2,001	2,001	0
Electrical/Mechanical	33,823	0	7,670
Office	10,430	10,430	0
Restroom	10,700	0	0
Retail	9,029	9,029	0
Shafts	22,866	0	22,866
Stair	20,235	0	20,235
Storage	8,035	0	8,035
Total	369,210	234,702	58,806

3 Introduction

The New School is committed to develop a sustainable project to the greatest extent. The project is pursuing a LEED Gold rating, through well insulated building shell, lighting reduction and additional HVAC efficiency measures. To assist in this goal, Buro Happold evaluated the performance of the building using energy analysis tools.

The goal of the analysis is to minimize the annual energy consumption of the building without compromising the thermal and visual comfort in the space. Design strategies are provided in terms of effectiveness of energy conservation measures.

This report illustrates the inputs and outputs of this process in the following terms:

- Building location
- Building geometry
- Building use schedules
- Internal loads
- Energy Analysis summary
- LEED Energy and Atmosphere credit 1 summary.

4 Methodology

For the whole building energy analysis, electricity and thermal load assessments the following methods of analysis were used.

4.1 Energy Modelling

An energy model of the proposed building was built to accurately represent the current architectural plans to match both geometry and resolution. This model was constructed using the eQuest v3.64. The eQuest software uses DOE 2.2 as the computational engine to predict the various energy flows in building during a Typical Meteorological Year (called as TMY). Most recent weather data for New York, NY is defined by the National Renewable Energy Laboratory (NREL) in TMY3 format. For detailed information refer to http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/

The energy model was based on US climate zone 4A for New York, NY (Table B-1 of ASHRAE 90.1-2007), and the building envelope requirements prescribed in Table 5.5-4 of ASHRAE/IESNA 90.1-2007. TMY3 weather file for New York Central Park, NY was used for this analysis.

eQuest software was used to generate a 3D model of the building with the internal space split into a number of control zones. The software then uses annual weather data to calculate the various energy flows into and out of each zone, including solar gains, people, lighting and equipment gains, the energy stored within the building fabric (envelope), and wind-driven infiltration. The energy model is capable of calculating variations of temperature in each control zone for every hour of the year, in addition to system's and thermal zones outside air and supply ventilation requirements.

For the purpose of LEED EA credit 1 compliance, two models are built in eQuest and whole building simulation is done in order to compare the resulting annual energy cost of the two building models.

- The first model, "Proposed Design Building," represents the current design (100%CD) as per the current architectural and systems set.
- The second model "Baseline Building" represents the same building, but is based on the minimum requirements of ASHRAE/IESNA Standard 90.1-2007, Appendix G.

Electricity rates used for both baseline and proposed cases was based on information provided by ConEdison website <u>http://www.coned.com/documents/elec/271-281a.pdf</u> for a general-large commercial (SC.9) with Rate III (Voluntary Time-of-Day, Low Tension service) tariff.

Charge Type		Electricity Rate
Supply Charge	Market Supply Charge	\$ 0.0888 per kWh
	Markey Supply Charge	\$ 14.16 per kW
	Monthly Adjustment Clause	\$ 1.035 per kW
Delivery Charge	Consumption	\$ 0.0071 per kWh
	Summer Demand (June – Sept) *	
	Monday through Friday, 8 AM to 6 PM	\$7.08 per kW
	Monday through Friday, 8 AM to 10 PM	\$15.16 per kW
	All hours – all days	• · · · •
	Winter Demand (Oct – May)*	\$ 14.50 per kW
	Monday through Friday, 8 AM to 10 PM	\$9.82 per kW
	All hours – all days	\$ 4.15 per kW

*: The demand charge for each time period will be determined by multiplying the maximum demand for the respective time period by the rate applicable to the demand for that time period. The total demand charge will be the sum of the charges for each of the time periods.

Natural gas rates used for both baseline and proposed cases was based on information provided by NYS Public Service Commission (<u>http://www.dps.state.ny.us/TypicalBills.htm</u>) for ConEdison's typical summer and winter rates.

Period	Natural Gas Rate
Winter Rates (between October and May)	\$ 1.305 per
	therms
Summer Rates (between June and September)	\$ 1.183 per
	therms

Results are reported as a comparison of energy consumption between the improved design and baseline building.

5 DTM – Building Energy Conservation Measures

The following energy efficiency measures have been incorporated into the architecture and HVAC design as of the issue date of this report:

- External glazing: Insulated low e glass with a glazing assembly U value ~ 0.40 Btu/hr·ft²·°F, SHGC – 0.59 (20% fritting = SHGC-0.49) compared to a U value of 0.55 Btu/hr·ft²·°F, SHGC – 0.40 for the external glazing in base case
- External wall: Steel Frame building with closed-cell extruded polystyrene (R 20), U value 0.043 Btu/hr·ft².°F compared to base case U value – 0.064 Btu/hr·ft².°F
- External roof with extruded polystyrene insulation (R 20), U value 0.043 Btu/hr·ft²·°F compared to base case U value – 0.048 Btu/hr·ft²·°F
- Efficient lighting design to reduce the overall lighting power density in the building by 18%
- Daylighting strategies to reduce artificial lights in the spaces in select academic perimeter spaces
- Variable frequency drives (VFD) control for chilled-water, hot-water and condenser pumps.
- Variable frequency drives (VFD) control for cooling tower fans.
- Modular, multi-stage with magnetic bearing (frictionless) high efficiency centrifugal chiller.
- Water-side economizer will provide free-cooling for HVAC system, especially for cooling loads during mild or cold weather.
- Fan-coils units with ECM motors in the dormitory would provide conditioning to the spaces with cycling fans to meet thermal loads as compared to the constant fan flow PTAC units in the base case.
- An on-site cogeneration plant will generate electricity for the facility use and recovered thermal energy as a by-product for DHW utilization on the site (200 kW and 65 kW systems)
- Energy recovery ventilation units will be used to pre-condition the fresh outside air year-around.
- An ice-storage unit with a dedicated chiller will be used to lower the chiller's cooling capacity requirement during summer days by storing ice during the night, when the electricity demand cost is cheaper.

6 DTM - Model Inputs and Assumptions

When developing thermal models it is necessary to make certain assumptions as to the levels of internal heat gains from equipment, people, and also properties of the building such as construction material and infiltration rate. The input data for the model are as follows:

Model Input Parameter / Energy Efficiency Measure	Baseline Case		Proposed Case			
	Description	Insulat ion R- value	Assembly U- factor/ C-factor/ F-factor	Description	Insulat ion R- value	Assembly U- factor/ C-factor/ F-factor
Roofs	Insulation entirely above deck	R-20	U-0.048 Btu/hr·ft²·°F	4" Extruded polystyrene board	R-20	U-0.043 Btu/hr·ft²·°F
Roof SRI	0.30 reflectivity	NA	NA	0.30 reflectivity	NA	NA
Walls - Above Grade	Steel framed building	R-13 + R7.5ci	U-0.064 Btu/hr·ft²·°F	Closed-cell 4" extruded polystyrene, 1" air space, Gypsum board	R-20	U-0.043 Btu/hr⋅ft²⋅°F
Walls - Below Grade	ASHRAE table 5.5-4	R-0	C-1.14 Btu/hr·ft²·°F	8" concrete w insulation	R-10	C-0.092 Btu/hr·ft ² ·°F
Semiheated Exterior Envelope	NA	NA	NA	NA	NA	NA
Floors	Steel joist	R-30	U-0.038 Btu/hr·ft ^{2.°} F	Steel joist	R-30	U-0.038 Btu/hr·ft ^{2.°} F
Slab-On- Grade Floors	unheated	R-0	F-0.73 Btu/hr·ft·°F	unheated; vertical 12"	R-7.5	F-0.60 Btu/hr·ft·°F
Opaque doors	Swinging Nonswinging	NA NA	U-0.700 Btu/hr·ft ^{2,°} F U-1.500 Btu/hr·ft ^{2,°} F	Swinging Nonswinging	NA NA	U-0.500 Btu/hr·ft ^{2.°} F U-1.000 Btu/hr·ft ^{2.°} F
Other	NA	NA	NA	NA	NA	NA

1.4.1A -ASHRAE 90.1 Section 5: Building Envelope (Construction Assemblies)

Model Input Parameter /	Baseline Case	Proposed Case	
Energy Efficiency Measure			
Vertical fenestration Area (%	31 50%	31 50%	
of Wall area)	51.50%	31.30 %	
Vertical Glazing Description	metal framing, all other	metal framing double glazed windows	
Vertical Glazing U-factor	U-0.55 Btu/hr·ft ^{2.°} F (assembly)	U-0.40 Btu/hr·ft ^{2.°} F (assembly)	
Vertical Glazing SHGC -	SHCC-0.40	SHGC-0.49 (bronze-frit)	
North	SHGC-0.40	SHGC-0.59 (no-frit)	
Vertical Glazing SHGC Non-		SHGC-0.49 (bronze-frit)	
North	SHGC-0.40	SHGC-0.59 (no-frit)	
Shading Devices	None	None	
Fenestration Visual Light	V/I T 0 00	VLT-0.62 (bronze-frit)	
Transmittance	VL1-0.90	VLT-0.78 (no-frit)	
Skylight Fenestration Area	ΝΑ	NIA	
(percent of roof area)			
Skylight Description	NA	NA	
Skylight U-factor	NA	NA	
Skylight SHGC	NA	NA	
Building Self-Shading	Nono	Nono	
Description	NONE	INDITE	
Building Orientation & Shape	north; rectangular	north; rectangular	
Other	NA	NA	

1.4.1B - ASHRAE 90.1 Section 5: Fenestration and Shading

Model Input Parameter /	Baseline Case	Proposed Case
Primary HVAC Type	System#7 - VAV w reheat (School &	VAV fan powered boxes
	Retail)	
Other HVAC Type	System#1 - PTAC (Dormitory)	FCU (Dormitory); Heat Recovery
		Units (HRU) serving school spaces
Semi-conditioned Space	NA	NA
HVAC Type		
Semi-conditioned Area (Gross	ΝΔ	ΝΔ
SF)		
Semi-conditioned Heating	ΝΔ	ΝΔ
Capacity (Btuh)		
	Building Total: 21,388 kBtu/h	Building Total: 15,473 kBtu/h
	AHU C2-1: 1,542 kBtu/h	AHU C2-1: 1,143 kBtu/h
	AHU C2-2: 404 kBtu/h	AHU C2-2: 232 kBtu/h
	AHU C2-3: 1,446 kBtu/h	AHU C2-3: 764 kBtu/h
	AHU C2-4: 872 kBtu/h	AHU C2-4: 543 kBtu/h
	AHU C2-5: 163 kBtu/h	AHU C2-5: 128 kBtu/h
	AHU 2-1: 1,173 kBtu/h	AHU 2-1: 764 kBtu/h
Total Cooling Conscitu	AHU 2-2: 948 kBtu/h	AHU 2-2: 666 kBtu/h
Total Cooling Capacity	AHU 3-1: 1,596 kBtu/h	AHU 3-1: 1,217 kBtu/h
	AHU 4-1: 1,905 kBtu/h	AHU 4-1: 1,503 kBtu/h
	AHU 5-1: 1,881 kBtu/h	AHU 5-1: 1,492 kBtu/h
	AHU 6-1: 1,953 kBtu/h	AHU 6-1: 1,520 kBtu/h
	AHU 7-1: 1,165 kBtu/h	AHU 7-1: 956 kBtu/h
	AHU 7-3: 590 kBtu/h	AHU 7-3: 270 kBtu/h
	AHU 7-4: 874 kBtu/h	AHU 7-4: 571 kBtu/h
	AHU 16-1: 344 kBtu/h	AHU 16-1: 159 kBtu/h

1.4.2 - ASHRAE 90.1 Section 6: HVAC (Air-Side)

	AHU 16-2: 588 kBtu/h	AHU 16-2: 165 kBtu/h
	PTAC 8th Flr: 447 kBtu/h	FCU 8th FIr: 392 kBtu/h
	PTAC 9th Flr: 456 kBtu/h	FCU 9th FIr: 404 kBtu/h
	PTAC 10th Flr: 451 kBtu/h	FCU 10th Flr: 398 kBtu/h
	PTAC 11th Flr: 418 kBtu/h	FCU 11th Flr: 366 kBtu/h
	PTAC 12-14th Flr: 1,544 kBtu/h	FCU 12-14th Flr: 1,372 kBtu/h
	PTAC 15th Flr: 426 kBtu/h	FCU 15th Flr: 373 kBtu/h
	PTAC 16th Flr: 202 kBtu/h	FCU 16th Flr: 75 kBtu/h
		HRU-1: 3,346 kBtu/h
		HRU-2: 3,346 kBtu/h
		HRU-3: 3,346 kBtu/h
Unitary Cooling Capacity	Individual PTAC size: 13.85 kBtu/h	NA
Ranges		
	9.55 EER Calculated per Table	
Unitary Cooling Efficiency	6.8.1D	NA
	Adjusted for Fan Power: 11.25 EER	
	Building Total: 16,200 kBtu/h	Building Total: 11,000 kBtu/h
	AHU C2-1: 1,370 kBtu/h	AHU C2-1: 1,037 kBtu/h
	ATU C2-2. 200 KDIU/II	AHU C2-2: 259 kBtu/h
	AHU C2-3: 965 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h
	AHU C2-2: 260 KBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h
	AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h
Total Hoating Capacity	AHU C2-2: 260 KBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h
Total Heating Capacity	AHU C2-2: 260 kBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h
Total Heating Capacity	AHU C2-2: 260 KBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h AHU 3-1: 950 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h AHU 3-1: 1,210 kBtu/h
Total Heating Capacity	AHU C2-2: 260 kBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h AHU 3-1: 950 kBtu/h AHU 4-1: 1,316 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h AHU 3-1: 1,210 kBtu/h AHU 4-1: 413 kBtu/h
Total Heating Capacity	AHU C2-2: 260 KBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h AHU 3-1: 950 kBtu/h AHU 4-1: 1,316 kBtu/h AHU 5-1: 1,256 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h AHU 3-1: 1,210 kBtu/h AHU 4-1: 413 kBtu/h AHU 5-1: 385 kBtu/h
Total Heating Capacity	AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h AHU 3-1: 950 kBtu/h AHU 4-1: 1,316 kBtu/h AHU 5-1: 1,256 kBtu/h AHU 6-1: 1,438 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h AHU 3-1: 1,210 kBtu/h AHU 4-1: 413 kBtu/h AHU 5-1: 385 kBtu/h AHU 6-1: 475 kBtu/h
Total Heating Capacity	AHU C2-2: 200 kBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h AHU 3-1: 950 kBtu/h AHU 4-1: 1,316 kBtu/h AHU 5-1: 1,256 kBtu/h AHU 6-1: 1,438 kBtu/h AHU 7-1: 920 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h AHU 3-1: 1,210 kBtu/h AHU 4-1: 413 kBtu/h AHU 5-1: 385 kBtu/h AHU 6-1: 475 kBtu/h AHU 7-1: 357 kBtu/h
Total Heating Capacity	AHU C2-2: 260 KBtu/h AHU C2-3: 965 kBtu/h AHU C2-4: 489 kBtu/h AHU C2-5: 95 kBtu/h AHU 2-1: 808 kBtu/h AHU 2-2: 529 kBtu/h AHU 3-1: 950 kBtu/h AHU 4-1: 1,316 kBtu/h AHU 5-1: 1,256 kBtu/h AHU 6-1: 1,438 kBtu/h AHU 7-1: 920 kBtu/h	AHU C2-2: 259 kBtu/h AHU C2-3: 778 kBtu/h AHU C2-4: 651 kBtu/h AHU C2-5: 16 kBtu/h AHU 2-1: 691 kBtu/h AHU 2-2: 648 kBtu/h AHU 3-1: 1,210 kBtu/h AHU 3-1: 385 kBtu/h AHU 5-1: 385 kBtu/h AHU 6-1: 475 kBtu/h AHU 7-3: 185 kBtu/h

AHU 7- AHU 16 AHU 16 PTAC 8th PTAC 9th PTAC 10t PTAC 10t PTAC 11t PTAC 12-14 PTAC 15t PTAC 16t	4: 596 kBtu/hAHU 7-4: 812 kBtu/h-1: 453 kBtu/hAHU 16-1: 172 kBtu/h-2: 446 kBtu/hAHU 16-2: 170 kBtu/h-2: 446 kBtu/hFCU 8th FIr: 319 kBtu/hFIr: 452 kBtu/hFCU 9th FIr: 326 kBtu/hFIr: 460 kBtu/hFCU 10th FIr: 323 kBtu/hFIr: 456 kBtu/hFCU 10th FIr: 323 kBtu/hFIr: 423 kBtu/hFCU 11th FIr: 299 kBtu/hFIr: 1,530 kBtu/hFCU 12-14th FIr: 1,070 kBtu/hFIr: 429 kBtu/hFCU 15th FIr: 304 kBtu/h
AHU 16 AHU 16 PTAC 8th PTAC 9th PTAC 10t PTAC 10t PTAC 12-14 PTAC 15t PTAC 16t	-1: 453 kBtu/h AHU 16-1: 172 kBtu/h -2: 446 kBtu/h AHU 16-2: 170 kBtu/h -Flr: 452 kBtu/h FCU 8th Flr: 319 kBtu/h -Flr: 460 kBtu/h FCU 9th Flr: 326 kBtu/h -Flr: 456 kBtu/h FCU 10th Flr: 323 kBtu/h -Flr: 423 kBtu/h FCU 11th Flr: 299 kBtu/h -Flr: 1,530 kBtu/h FCU 12-14th Flr: 1,070 kBtu/h -Flr: 429 kBtu/h FCU 15th Flr: 304 kBtu/h
AHU 16 PTAC 8th PTAC 9th PTAC 10t PTAC 10t PTAC 11t PTAC 12-14 PTAC 15t PTAC 16t	-2: 446 kBtu/h AHU 16-2: 170 kBtu/h FIr: 452 kBtu/h FCU 8th FIr: 319 kBtu/h FIr: 460 kBtu/h FCU 9th FIr: 326 kBtu/h FIr: 456 kBtu/h FCU 10th FIr: 323 kBtu/h FIr: 423 kBtu/h FCU 11th FIr: 299 kBtu/h FIr: 1,530 kBtu/h FCU 12-14th FIr: 1,070 kBtu/h FIr: 429 kBtu/h FCU 15th FIr: 304 kBtu/h
PTAC 8th PTAC 9th PTAC 10t PTAC 10t PTAC 11t PTAC 12-14 PTAC 15t PTAC 16t	FIr: 452 kBtu/h FCU 8th FIr: 319 kBtu/h FIr: 460 kBtu/h FCU 9th FIr: 326 kBtu/h n FIr: 456 kBtu/h FCU 10th FIr: 323 kBtu/h n FIr: 423 kBtu/h FCU 11th FIr: 299 kBtu/h ch FIr: 1,530 kBtu/h FCU 12-14th FIr: 1,070 kBtu/h n FIr: 429 kBtu/h FCU 15th FIr: 304 kBtu/h
PTAC 9th PTAC 10t PTAC 11t PTAC 12-14 PTAC 15t PTAC 16t	FIr: 460 kBtu/h FCU 9th FIr: 326 kBtu/h n FIr: 456 kBtu/h FCU 10th FIr: 323 kBtu/h n FIr: 423 kBtu/h FCU 11th FIr: 299 kBtu/h ch FIr: 1,530 kBtu/h FCU 12-14th FIr: 1,070 kBtu/h n FIr: 429 kBtu/h FCU 15th FIr: 304 kBtu/h
PTAC 10t PTAC 11t PTAC 12-14 PTAC 15t PTAC 16t	h FIr: 456 kBtu/hFCU 10th FIr: 323 kBtu/hh FIr: 423 kBtu/hFCU 11th FIr: 299 kBtu/hch FIr: 1,530 kBtu/hFCU 12-14th FIr: 1,070 kBtu/hh FIr: 429 kBtu/hFCU 15th FIr: 304 kBtu/h
PTAC 11t PTAC 12-14 PTAC 15t PTAC 16t	h Flr: 423 kBtu/h FCU 11th Flr: 299 kBtu/h ch Flr: 1,530 kBtu/h FCU 12-14th Flr: 1,070 kBtu/h h Flr: 429 kBtu/h FCU 15th Flr: 304 kBtu/h
PTAC 12-14 PTAC 15t PTAC 16t	th Flr: 1,530 kBtu/hFCU 12-14th Flr: 1,070 kBtu/hn Flr: 429 kBtu/hFCU 15th Flr: 304 kBtu/h
PTAC 15t PTAC 16t	n Flr: 429 kBtu/h FCU 15th Flr: 304 kBtu/h
PTAC 16t	
	n Flr: 212 kBtu/h FCU 16th Flr: 102 kBtu/h
	HRU-1: 2,226 kBtu/h
	HRU-2: 2,226 kBtu/h
	HRU-3: 2,226 kBtu/h
Unitary Heating Capacity	NA
Ranges	
Unitary Heating Efficiency	NA NA
Variable Sp	beed (System#7);
Ean System Operation	en occupied, Cycling
to meet the	ermal loads when
unoccup	ed (System#1)
Building To	otal: 136,850 cfm Building Total: 136,850 cfm
AHU C2	-1: 12,000 cfm AHU C2-1: 12,000 cfm
AHU C2	2-2: 3,000 cfm AHU C2-2: 3,000 cfm
AHU C2	2-3: 6,000 cfm AHU C2-3: 6,000 cfm
Outdoor Air Design Min AHU C2	2-4: 8,000 cfm AHU C2-4: 8,000 cfm
Ventilation AHU C	2-5: 550 cfm AHU C2-5: 550 cfm
AHU 2-	1: 10,000 cfm AHU 2-1: 10,000 cfm
AHU 2	-2: 4,500 cfm AHU 2-2: 4,500 cfm
	1: 10,500 cfm AHU 3-1: 10,500 cfm
AHU 3-	
unoccup Building To AHU C2	ed (System#1) Building Total: 136,850 cfm -1: 12,000 cfm AHU C2-1: 12,000 cfm

	AHU 5-1: 12,000 cfm	AHU 5-1: 12,000 cfm
	AHU 6-1: 12,000 cfm	AHU 6-1: 12,000 cfm
	AHU 7-1: 7,500 cfm	AHU 7-1: 7,500 cfm
	AHU 7-3: 2,000 cfm	AHU 7-3: 2,000 cfm
	AHU 7-4: 7,000 cfm	AHU 7-4: 7,000 cfm
	AHU 16-1: 9,000 cfm	AHU 16-1: 9,000 cfm
	AHU 16-2: 9,000 cfm	AHU 16-2: 9,000 cfm
	PTAC 8th Flr: 1,400 cfm	FCU 8th Flr: 1,400 cfm
	PTAC 9th Flr: 1,400 cfm	FCU 9th Flr: 1,400 cfm
	PTAC 10th Flr: 1,400 cfm	FCU 10th Flr: 1,400 cfm
	PTAC 11th Flr: 1,300 cfm	FCU 11th Flr: 1,300 cfm
	PTAC 12-14th Flr: 4,000 cfm	FCU 12-14th Flr: 4,000 cfm
	PTAC 15th Flr: 1,300 cfm	FCU 15th Flr: 1,300 cfm
	PTAC 16th Flr: 1,000 cfm	FCU 16th Flr: 1,000 cfm
HVAC Air-side Economizer	NIA	NA
Cycle	NA	INA
Economizer High-Limit	NIA	ΝΔ
Shutoff	INA	INA

Design Airflow Rates (Conditioned Space)

Building Total: 479,686 cfm AHU C2-1: 27,786 cfm AHU C2-2: 8,571 cfm AHU C2-3: 30,060 cfm AHU C2-4: 18,025 cfm AHU C2-5: 3,494 cfm AHU 2-1: 20,926 cfm AHU 2-2: 19,065 cfm AHU 3-1: 31,359 cfm AHU 4-1: 36,078 cfm AHU 5-1: 35,784 cfm AHU 6-1: 36,600 cfm AHU 7-1: 21,807 cfm AHU 7-3: 11,045 cfm AHU 7-4: 16,265 cfm AHU 16-1: 16,759 cfm AHU 16-2: 28,788 cfm PTAC 8th Flr: 13,223 cfm PTAC 9th FIr: 13,522 cfm PTAC 10th Flr: 13,360 cfm PTAC 11th Flr: 12,302 cfm PTAC 12-14th Flr: 47,079 cfm PTAC 15th Flr: 12.522 cfm PTAC 16th Flr: 5,266 cfm

Building Total: 373,530 cfm AHU C2-1: 24,000 cfm AHU C2-2: 6,000 cfm AHU C2-3: 18,000 cfm AHU C2-4: 16,000 cfm AHU C2-5: 3,000 cfm AHU 2-1: 16,000 cfm AHU 2-2: 15,000 cfm AHU 3-1: 28,000 cfm AHU 4-1: 32,000 cfm AHU 5-1: 32,000 cfm AHU 6-1: 32,000 cfm AHU 7-1: 20,000 cfm AHU 7-3: 4,000 cfm AHU 7-4: 15,000 cfm AHU 16-1: 9,000 cfm AHU 16-2: 9,000 cfm FCU 8th Flr: 10,913 cfm FCU 9th Flr: 11,264 cfm FCU 10th Flr: 11,095 cfm FCU 11th Flr: 10,166 cfm FCU 12-14th Flr: 38,878 cfm FCU 15th Flr: 10,397 cfm FCU 16th Flr: 1,817 cfm HRU-1: 35,000 cfm HRU-2: 35,000 cfm HRU-3: 35,000 cfm

Total System Fan Power (Conditioned)	Building Total: 539.7 kW AHU C2-1: 40 kW AHU C2-2: 12.6 kW AHU C2-3: 40.9 kW AHU C2-4: 26.1 kW AHU C2-5: 4.7 kW AHU C2-5: 4.7 kW AHU 2-1: 32.1 kW AHU 2-2: 25.9 kW AHU 2-2: 25.9 kW AHU 3-1: 43.3 kW AHU 4-1: 49.4 kW AHU 5-1: 49.4 kW AHU 5-1: 49.4 kW AHU 5-1: 50.1 kW AHU 7-1: 30.1 kW AHU 7-3: 15 kW AHU 7-3: 15 kW AHU 7-4: 23.6 kW AHU 16-1: 22.5 kW AHU 16-2: 38.3 kW PTAC 8th FIr: 4 kW PTAC 9th FIr: 4.1 kW PTAC 9th FIr: 4.1 kW PTAC 10th FIr: 4.1 kW PTAC 10th FIr: 3.8 kW PTAC 12-14th FIr: 14.3 kW PTAC 15th FIr: 3.8 kW	Building Total: 383.2 kW AHU C2-1: 30.9 kW AHU C2-2: 5.6 kW AHU C2-3: 20.5 kW AHU C2-4: 14.9 kW AHU C2-5: 3.7 kW AHU C2-5: 3.7 kW AHU 2-1: 20.6 kW AHU 2-1: 20.6 kW AHU 2-2: 20.6 kW AHU 3-1: 33.6 kW AHU 3-1: 33.6 kW AHU 4-1: 46.3 kW AHU 5-1: 46.3 kW AHU 6-1: 46.3 kW AHU 6-1: 46.3 kW AHU 7-1: 30.8 kW AHU 7-3: 5.6 kW AHU 7-4: 14.9 kW AHU 16-1: 11.2 kW AHU 16-2: 11.2 kW FCU 8th Flr: 2.3 kW FCU 9th Flr: 2.4 kW FCU 9th Flr: 2.4 kW FCU 10th Flr: 2.2 kW FCU 12-14th Flr: 8.3 kW FCU 15th Flr: 0.4 kW HRU-1: 85.8 kW HRU-2: 85.8 kW
Total Supply Fan Power	NA	HRU-3: 85.8 kW HRU-1: 56 kW HRU-2: 56 kW HRU-3: 56 kW

Total Return / Relief Fan Power	NA	NA
Total Exhaust Fan Power		HRU-1: 29.8 kW
(tied to AHUs)	NA	HRU-2: 29.8 kW
		HRU-3: 29.8 kW
	For all AHU's except AHU 7-4, 16-1,	
	& 16-2:	
	Fully ducted return and/or exhaust	
	systems - 0.5	
	Return and/or exhaust airflow control	
	devices - 0.5	
	Exhaust filters, scrubbers, or other	
	exhaust treatment - 0.47	
	Particulate Filtration Credit: MERV 13	
	through 15 - 0.9	
6.5.3.1.1B Pressure Drop	Heat recovery device - 0.8	NA
Adjustments	Total - 3.17	
	For AHU 7-4, 16-1, & 16-2:	
	Fully ducted return and/or exhaust	
	systems - 0.5	
	Return and/or exhaust airflow control	
	devices - 0.5	
	Exhaust filters, scrubbers, or other	
	exhaust treatment - 0.47	
	Total - 1.47	
Zone Terminal Boxes Fan	NA	0.00015 kW/cfm
Power		0.00010 KW/0111
Unconditioned Total Fan Power	NA	NA

Unconditioned Total Fan Flow	NA	NA
Semi-conditioned Total Fan Power	NA	NA
Semi-conditioned Total Fan Flow	NA	NA
Exhaust Air Energy Recovery	NA	% of Building Served: 60%
		Effectiveness: 85%
		Operation - OA Delta Enthalpy (1
		Btu/lb)
		Operating Mode- Heating/Cooling
		Make-up Air Temp Ctrl – Mixed Air-
		Rst
		Capacity Control – Modulate HX
Demand Control Ventilation	None	None
Supply Air Temperature	Reset higher by 5°F under minimum	Reset higher by 5°F under minimum
Reset Parameters	cooling load conditions	cooling load conditions
Thermal Energy Storage	NA	NA
Other	NA	NA

1.4.3 - ASHRAE 90.1 Appendix G: HVAC (Water-side)

Model Input Parameter /	Baseline Case	Proposed Case
Energy Efficiency Measure	Bascinic Gasc	
The Project Has District	Ν	Ν
Heating (Y/N)		
The Project Has District	Ν	N
Cooling (Y/N)		
Number of Chillers	2 water-cooled centrifugal	3 (2 centrifugal water cooled; 1
		screw for ice storage)
Chiller Part-Load Controls	None	frictionless; 2 compressor per circuit
Chiller Capacity (Per Chiller)	2x750 tons (1500 tons total)	2x390 tons; 1x425 tons (1200 tons
		total)
Chiller Efficiency	6.1 COP @ AHRI	6 COP @ AHRI; 5.9 COP @ AHRI
Chilled Water Loop Supply	44°F	42°F
Temp		
Chilled Water (CHW) Loop	12°F	11°F
Delta-T		
CHW Loop Temp Reset	OA Reset (per ASHRAE section	Load Reset
Parameters	G3.1.3.9)	
CHW Loop Configuration	Primary/Variable Secondary	Primary/Variable Secondary
Number of Primary CHW	1	2
Pumps		_
Primary CHW Pump Power	9 W/gpm (40 HP)	17 W/gpm (50 HP)
Primary CHW Pump Flow	2,905 gpm	2,160 gpm
Primary CHW Pump Speed	Constant Speed	Variable Speed
Control	Constant Opeed	Valiable Opeeu
Secondary CHW Pump	13 W/gpm (50 HP)	35 W/apm (100 HP)
Power		
Secondary CHW Pump Flow	2,905 gpm	2160 gpm

Secondary CHW Pump	Variable Speed	Variable Speed		
Speed Control	variable Speed	vanable Speed		
Number of Cooling Towers /	1	3		
Fluid Coolers				
Cooling Tower Fan Power	38.2 gpm/hp (80 kW)	33.75 gpm/hp (90 kW; 40 hp each)		
Cooling Tower Fan Control	two-speed	variable speed		
Condenser Water Leaving	95°E (looving cooling tower)	PE°E (looving cooling tower)		
Temperature	os r (leaving cooling tower)			
Condenser Water (CW) Loop	10°E	12°F		
Delta-T	IUF			
CW Loop Temp Reset	Fixed	Load Rosot		
Parameters	TINGU			
CW Loop Configuration	Constant Primary	Primary/Variable Secondary		
Number of CW Pumps	1	2		
CW Pump Power	19 W/gpm (100 HP)	55 W/gpm (200 HP)		
CW Pump Flow	4,057 gpm	2,700 gpm		
CW Pump Speed Control	Constant Speed	Variable Speed		
Number of Boilers	2 Hydronic Boilers	3 Steam Boilers		
Boiler Part-Load Controls	NA	NA		
Boiler Canacity (Per Boiler)	2x 8 353 kBtu/b (16 700 kBtu/b total)	2x8368 kBtu/h; 1x4184 kBtu/h		
Doner Capacity (1 er Doner)		(20,900 kBtu/h total)		
Boiler Efficiency	82% Ec (~80% Et)	82% Et		
Boiler Water Loop Supply	180°E	250°F; (180°F supply on steam-to-		
Temperature	1001	how HX)		
Hot Water or Steam (HHW)	50°E	20°E		
Loop DT	301	201		
HHW Loop Temp Reset	OA Reset (per ASHRAE section	Load-Posot		
Parameters	G3.1.3.4)			
HHW Loop Configuration	Primary Only Variable	Primary Only Variable		

Number of Primary HHW Pumps	1	3			
Primary HHW Pump Power	19 W/gpm (17 HP)	37 W/gpm (30 HP)			
Primary HHW Pump Flow	670 gpm	600 gpm			
Primary HHW Pump Speed Control	Variable Speed	Variable Speed			
Secondary HHW Pump Power	NA	NA			
Secondary HHW Pump Flow	NA	NA			
Secondary HHW Pump Speed Control	NA	NA			
Thermal Energy Storage Capacity	NA	2,800 ton-hr			
Thermal Energy Storage Control Sequence	NA	10 hrs charge; 14 hrs discharge (Charge between 10 PM-8AM)			
Thermal Energy Storage Charge Temp	NA	25°F			
Thermal Energy Storage Chiller Efficiency	NA	4.8 COP			
Water-side Economizer	NA	350 ton capacity; 80% effectiveness plate HX			
Water-side Energy Recovery	NA	NA			
Cogeneration	NA	200 kW & 65 kW cogeneration systems			
Electricity Generation Efficiency	NA	33% & 29%			
Exhaust Heat Recovery Efficiency	NA	50% (serving only DHW loop)			

1.4.4 - ASHRAE 90.1 Section 7: Service Water Heating

Model Input Parameter / Energy Efficiency Measure	Baseline Case	Proposed Case
SHW Equipment Type	Gas-fired Storage Water Heater	Gas-fired Storage Water Heater
SHW Storage Tank Capacity	DHW Heater 1: 1,000 Gals DHW Heater 2: 900 Gals	DHW Heater 1: 1,000 Gals DHW Heater 2: 900 Gals
SHW Heating Input Capacity ¹	DHW Heater 1: 797 kBtu/h DHW Heater 2: 1,455 kBtu/h	DHW Heater 1: 797 kBtu/h DHW Heater 2: 1,455 kBtu/h
Equipment Efficiency ¹	DHW Heater 1: 80% Et, SL 4,475 Btu/h DHW Heater 2: 80% Et, SL 5,119 Btu/h	DHW Heater 1: 80% Et, SL 4,475 Btu/h DHW Heater 2: 80% Et, SL 5,119 Btu/h
Temperature Controls	140°F Supply	140°F Supply
SHW Energy Recovery	NA	NA
Other	No improvements on DHW equipment	No improvements on DHW equipment

Model Input Parameter / Energy Efficiency Measure	Baseline Case	Proposed Case		
Automatic Lighting Shutoff	Lighting schedules used are	Lighting schedules used are		
Method	understood to reflect mandatory	understood to reflect mandatory		
Method	control requirements (table G3.1.6)	control requirements (table G3.1.6)		
Gross Lighted Floor Area	346,344 sf	346,344 sf		
Interior Lighting Power Calc Method	Space-by-Space Method	Space-by-Space Method		
Interior Lighting Power Density (Average)	1.14 W/sf	0.93 W/sf		
	Stair - 0.6 W/sf	Stair - 0.42 W/sf		
	Dorm - 1.1 W/sf	Dorm - 0.58 W/sf		
	Storage - 0.8 W/sf	Storage - 0.62 W/sf		
	Corridor - 0.5 W/sf	Corridor - 0.82 W/sf		
	Laundry - 1.9 W/sf	Laundry - 0.87 W/sf		
	MER - 1.5 W/sf	MER - 0.97 W/sf		
	Dining - 0.9 W/sf	Dining - 0.98 W/sf		
	Office - 1.1 W/sf	Office - 1.07 W/sf		
Interior LPD per space	Restroom - 0.9 W/sf	Restroom - 1.13 W/sf		
(Space-by-Space)	Fitness - 0.6 W/sf	Fitness - 1.15 W/sf		
	Kitchen - 1.2 W/sf	Kitchen - 1.22 W/sf		
	Meeting - 1.3 W/sf	Meeting - 1.27 W/sf		
	Lecture - 1.4 W/sf	Lecture - 1.3 W/sf		
	Classroom - 1.4 W/sf	Classroom - 1.35 W/sf		
	Lobby - 1.3 W/sf	Lobby - 1.39 W/sf		
	Lounge - 1.2 W/sf	Lounge - 1.42 W/sf		
	Library Reading - 1.2 W/sf	Library Reading - 1.21 W/sf		
	Auditorium - 2.6 W/sf	Auditorium - 1.51 W/sf		

1.4.5 - ASHRAE 90.1 Section 9: Lighting

	Library Stacks - 1.7 W/sf Retail - 1.7 W/sf	Library Stacks - 1.58 W/sf Retail - 1.7 W/sf	
Additional Lighting Power Allowance	NA	NA	
Automatic Interior Space Shutoff Control in Required Spaces (Section 9.4.1.2)	Classrooms, meeting rooms, break areas	Classrooms, meeting rooms, break areas	
Interior Lighting Power Adjustments (Table G3.2)	None	None	
Daylight Dimming Controls	None	Perimeter spaces in academic spaces; 50% of space lighting controlled using continuous dimming	
Automatic Exterior Lighting Control	NA	NA	
Total Exterior Lighting Power	NA	NA	
Tradable Surface Exterior Lighting Power	NA	NA	

Buro Happold

Buro Happold		
Non-Tradable Surface	NIA	NA
Exterior Lighting Power	INA	NA
Other	NA	NA

1.4.6 – Miscellaneous

Model Input Parameter / Energy Efficiency Measure	Baseline Case	Proposed Case		
Receptacle equipment	Auditorium(Assembly) – 1.0 W/sf Classrooms – 1.0 W/sf Mechanical / Electrical – 0.5 W/sf Restrooms – 0.0 W/sf Kitchen – 1.0 W/sf Dormitory (Living Quarters) – 0.5 W/sf Lounge – 0.5 W/sf Office – 1.0 W/sf Fitness - 2.0 W/sf Storage - 0 W/sf Laundry - 1.0 W/sf Retail - 0.5 W/sf Dining - 1.0 W/sf	Auditorium(Assembly) – 1.0 W/sf Classrooms – 1.0 W/sf Mechanical / Electrical – 0.5 W/sf Restrooms – 0.0 W/sf Kitchen – 1.0 W/sf Dormitory (Living Quarters) – 0.5 W/sf Lounge – 0.5 W/sf Office – 1.0 W/sf Fitness - 2.0 W/sf Storage - 0 W/sf Laundry - 1.0 W/sf Retail - 0.5 W/sf Dining - 1.0 W/sf		
Escalators and Elevators	132 kW	132 kW		
Refrigeration equipment	NA	NA		
Cooking	NA	NA		
Data Center & Server Room Loads	NA	NA		
Process loads	NA	NA		
Other	NA	NA		

7 Energy Summary by End use (Proposed design vs. baseline building)

End Use	Energy Type	Proposed Building		Proposed Building Baseline Building		Proposed / Baseline Energy %			
Lighting - Conditioned	Electricity,	827	,074	971	,180	85	5%		
Space Cooling & Heat Rejection	Electricity, kWh	986,347		986,347		1,41	0,548	70)%
Space heating	Electricity, kWh	5,665		5,665 0		-			
Space heating	Natural Gas, therms	80,482		80,482 158,605		51	%		
Pumps & Aux	Electricity, kWh	639,635		843,549		76%			
Fans	Electricity, kWh	1,036,644		1,336,910		78%			
Office Equipment/Elev	Electricity, kWh	974,219		974,219		100%			
DHW	Natural Gas, therms	4,670		55,910		8%			
Cogeneration Gas Consumption	Natural Gas, therms	245,830		245,830 N/A		N	/A		
Cogeneration Electricity Generation	Electricity, kWh	-2,324,545		N/A		N/A			
TOTAL BUILDING CONSUMPTION (MMBtu)		40,414.389		40,341.717		100.2%			
Туре		Proposed Energy Use	Proposed Cost	Baseline Energy Use	Baseline Cost	Prop Bas	osed / eline		
		[kWh], [therms]	[\$]	[kWh]	[\$]	Energy %	Cost %		
Total Electricity		2,144,223	\$519,119	5,536,406	\$1,089,011	39%	48%		
Total Natural Gas		330,983	\$420.315	214,515	\$275,673	154%	152%		
Total Energy Cost			\$939,432		\$1,362,447		69%		
				P	ercent Cost S	avings =	31.16%		

Results of whole building simulation show that the improved proposed design, with agreed upon energy conservation measures, and performs **31.2%** better energy cost savings than the baseline building.

8 Conclusion

8.1 Energy Analysis

The building is designed with an aim to reduce the energy consumption by incorporating efficiency gains in the form of high performance envelope, reduced lighting loads, on-site electricity generation, waste heat recovery and efficient mechanical system operation. The results of energy analysis show that the proposed design consumes 2,144 MWh of electricity and 330,983 therms of natural gas annually. The total estimated annual energy cost for the proposed case is about \$939,432.

The calculation for LEED EA credit 1, using Performance Rating Method, show that the proposed building designs performs **31.2% better** than the baseline building.

It is essential that the building performs as intended for less energy operation. Thus, it is recommended that building automation controls be installed to optimize the building energy use, with manual override.

Buro Happold 100 Broadway Floor 23 New York NY 10005